skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pickett, Steward_T A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Green stormwater infrastructure (GSI) is advocated for its potential to provide multiple ecosystem services, including stormwater runoff mitigation, wildlife habitat, and aesthetic value. However, the provision of these ecosystem services depends on both facility design and maintenance, which may vary based on whether GSI was installed to fulfill regulatory construction permit requirements or implemented voluntarily as part of urban greening initiatives. We evaluated 76 GSI facilities distributed across Baltimore, MD, USA, comprising 48 voluntary and 28 regulatory facilities. Each facility was scored on indicators related to the provision of stormwater, habitat, and aesthetic ecosystem services. Ecosystem service scores were highly variable, reflecting a wide range of quality and condition, but we found no significant differences between scores for regulatory and voluntary GSI. However, voluntary GSI scores tended to be higher in areas with greater socioeconomic status, while regulatory facilities showed an inverse relationship. Our findings indicate that GSI facilities can degrade quickly, and that official maintenance requirements for regulatory facilities do not guarantee upkeep. Regulatory requirements did have better outcomes in areas with lower socioeconomic status, though. Degraded GSI facilities may do more harm than good, becoming both unsightly and ineffective at providing intended stormwater or habitat benefits. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025
  3. Abstract This paper positions urban ecology as increasingly conversant with multiple perspectives and methods for understanding the functions and qualities of diverse cities and urban situations. Despite progress in the field, we need clear pathways for positioning, connecting and synthesising specific knowledge and to make it speak to more systemic questions about cities and the life within them. These pathways need to be able to make use of diverse sources of information to better account for the diverse relations between people, other species and the ecological, social, cultural, economic, technical and increasingly digital structures that they are embedded in. Grounded in a description of the systemic knowledge needed, we propose five complementary and often connected approaches for building cumulative systemic understandings, and a framework for connecting and combining different methods and evidence. The approaches and the framework help position urban ecology and other fields of study as entry points to further advance interdisciplinary synthesis and open up new fields of research. 
    more » « less